
ERGEBNISSE DER STUDIE: "ROHSTOFFE FÜR **ZUKUNFTSTECHNOLOGIEN 2021"**

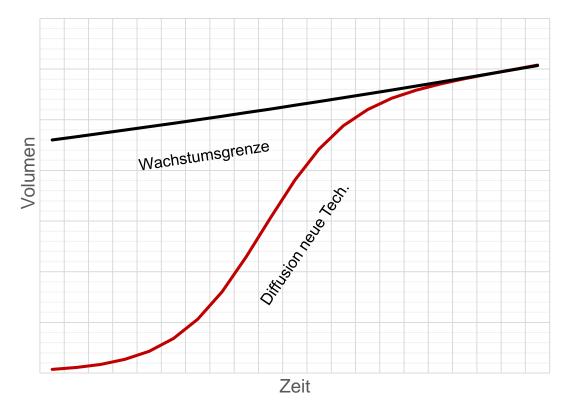
Maisel, Franziska; Marscheider-Weidemann, Frank; Langkau, S.; Baur, S.-J.; Billaud, M.; Deubzer, O.; Eberling, E.; Erdmann, L.; Haendel, M.; Krail, M.; Loibl, A.; Maisel, F.; Marwede, M.; Neef, C.; Neuwirth, M.; Rostek, L.; Rückschloss, J.; Shirinzadeh, S.; Stijepic, D.; Tercero Espinoza, L.; Tippner, M.

© Bäras, CC BY-SA 3.0 © Climeworks

AGENDA

- Methodik der Studie
- Technologieauswahl
- Technologiebeispiele
- Ergebnisse

Diffusionsmodell


Schätzmethode trennt die technische und wirtschaftliche Entwicklung

- $B = b \cdot A$
- Rohstoffbedarf einer bestimmten Anwendung in t/a
- spezifischer Rohstoffbedarf der Anwendung (t/Einheit)
- Aktivitätsrate (Produktionsmenge) der Anwendung (Einheiten/a)

Betrachtung für Bezugs- und Zieljahr:

(2)
$$\frac{B_{2040}}{B_{2018}} = \frac{b_{2040}}{b_{2018}} \cdot \frac{A_{2040}}{A_{2018}}$$

Verlauf Bass-Diffusions-Modell

Foresightmethodik 2040 - Rahmenszenarien SSP (Shared Socioeconomic Pathways) Szenarien

SSP 5 Fossiler Pfad SSP 1 Nachhaltigkeit SSP 2 Mittelweg (Taking the Highway) (Taking the Green Road) (Middle of the Road) Die Weltgemeinschaft wandert auf Die Weltgemeinschaft folgt einem Der Glaube an Technologie als Pfad, auf dem sich die sozialen, einem nachhaltigen Pfad, weil die "Wunderwaffe" gegen den wirtschaftlichen und technologischen Klimawandel setzt Investitions- und Bedeutung von nachhaltigen Trends nicht deutlich von den Strukturen für eine gesunde Entwicklungsprioritäten für die Wirtschaft und eine gesunde historischen Mustern unterscheiden. Weltgemeinschaft. Herausforderungen Gesellschaft anerkannt wurden. zur Emissionsreduktion sind hoch, die Entwicklung und Einkommenswachs-Herausforderungen zur tum verlaufen ungleichmäßig, wobei Herausforderung in der Anpassung an Emissionsreduktion sind niedrig, einige Länder relativ gute Fortschritte den Klimawandel sind jedoch niedrig. ebenso wie die Herausforderungen machen. Globale und nationale bei der Anpassung an den Institutionen arbeiten darauf hin, Klimawandel. machen aber nur langsame Fortschritte bei der Erreichung nachhaltiger Entwicklungsziele.

Gemeinsame sozioökonomische Pfade (SSP) wurden für die Durchführung integrierter, multidisziplinärer Analysen von einem internationalen Team von Klimawissenschaftler:innen, Ökonom:innen und Energiesystemmodellierer:innen entwickelt: https://doi.org/10.1016/i.gloenvcha.2016.05.009

Cluster Mobilität

Übergeordnetes Ziel Deutschland

Sektor Verkehr bis 2050 "nahezu" dekarbonisiert

Klimaschutzplan (2017)

Verkehrsparadigmen

- Umsetzung der 3 "V": "vermeiden, verlagern und verbessern"
- Vermeidung von Verkehrsleistung (z.B. durch Digitalisierung, Verbesserung der Besetzungsgrade/des Ladefaktors der Fahrzeuge und durch Sharing/Pooling)
- Verlagerung des Verkehrs auf effizientere und THG-ärmere Verkehrsmittel (z.B. von der Straße auf die Schiene oder aus der Luft auf die Schiene)
- Verbesserung der Effizienz der Fahrzeuge und Vergrößerung der Anteile elektrifizierter Fahrzeuge

Verkehrs-Infrastruktur

- Vernetztes Fahren Kommunikation zwischen Fahrzeugen und Infrastruktur (C2X) über Mobilfunk (min. 4G) und Rechenzentren
- Lkw-Parkplatzmanagement
- Radschnellwegenetz
- Ausbau Schieneninfrastruktur (Strecken, Knoten, Digitale Leit- und Sicherungstechnik)
- · Oberleitungsinfrastruktur auf den Bundesautobahnen für Hybrid-Lkws
- · Wasserstoffbetankungsinfrastruktur

Verkehrsträger

Pkw/Lkw/Busse

- · Automatisches Pilotieren von Kraftfahrzeugen
- Elektrische Traktionsmotoren für Kraftfahrzeuge (Nd, Dy)
- PEM-Brennstoffzellen Elektrofahrzeuge
- Superkondensatoren f

 ür Kraftfahrzeuge
- Pantographen für Hybrid-Oberleitungs-Lkw

Fahrräder

Services

· Pedelecs, S-Pedelecs, e-Bikes, e-Lastenfahrräder

Schiffe/Bahnen

- Sky sails (vollautomatischer Zugdrachenantrieb)
- LNG-Schiffsantrieb
- H2BZ-Triebwagen
- Batterie-Triebwagen
- Automatisiertes Rangieren

Flugzeuge

- Unbemannte Luftfahrzeuge ("Drohnen")
- Flugtaxis (elektrisch angetriebene Multikopter u.ä.)
- Scandium-Legierungen für den "Airframe"-Leichtbau
- Einsatz von Batterietechnologie für Kurz-/Mittelstrecke

Fahrzeugbau

• Leichtbau (Tailored Blanks, Mg, Al, CFK)

Kraftstoffe /Energieversorgung

- Synthetische Kraftstoffe: PtX, BtL (Co)
- Wasserstoff aus Elektrolyse (Ir)
- Lithium-Ionen-Hochleistungsspeicher für Pkw (Li, Ni, Mn, Co) /Festkörperbatterie (Li, Ti, Ni, Mn, La)
- Induktive Übertragung elektrischer Energie (Cu)
- LNG (auf -161 bis -164 °C verflüssigtes Erdgas)

Technologieportfolio Rohstoffe für Zunftstechnologien 2021

Mobilität, Luft- und Raumfahrt

- 1. Pkw-Leichtbau (TB, Al, Mg, Carbonfasern)
- 2. Elektrische Traktionsmotoren für Kraftfahrzeuge
- 3. Legierungen für den "Airframe"-Leichtbau
- 4. Automatisches Pilotieren von Kraftfahrzeugen
- 5. Flugtaxis & unbemannte Luftfahrzeuge
- 6. Superlegierungen
- 7. Lithium-Ionen-Hochleistungsspeicher (für mobile Anwendungen)
- 8. Feststoffbatterie

Digitalisierung und Industrie 4.0

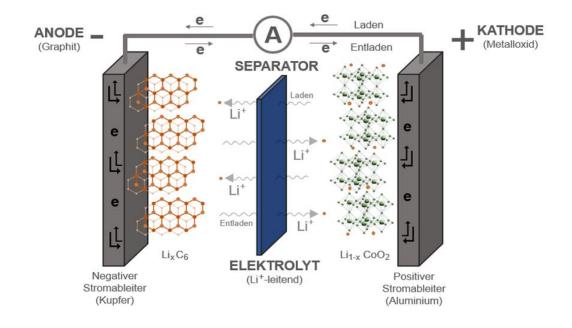
- 9. Indium-Zinn-Oxid (ITO) in der Displaytechnik
- 10. Quantencomputer
- 11. Optoelektronik / Photonik
- 12. Mikroelektronische Kondensatoren
- 13. Hochfrequenz-Mikrochips
- 14. Industrielle Robotik + Industrie 4.0
- 15. Additive Fertigung ("3D-Drucker")
- 16. Geräte im IoT

Energietechnologien und Dekarbonisierung

- 17. Thermoelektrische Generatoren
- 18. Dünnschicht-Photovoltaik
- 19. Wasser-Elektrolyse
- 20. Direct-Air Capture (DAC)
- 21. SOFC Stationäre Brennstoffzelle
- 22. CCS Carbon Capture and Storage
- 23. Redox-Flow –Speicher
- 24. Windkraftanlagen
- 25. Hochleistungs-Permanentmagnete
- 26. Synthetische Kraftstoffe

Kreislauf- und Wasserwirtschaft

- 27. Meerwasserentsalzung
- 28. Rohstoffliches Recycling (von Kunststoffen)

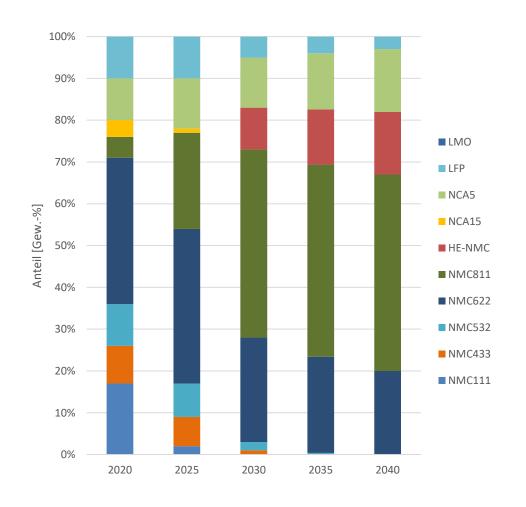

Strom- und Datennetzwerke

- 29. Ausbau Stromnetz
- 30. Glasfaserkabel
- 31. 5G (6G)
- 32. Rechenzentren
- 33. Induktive Übertrag. elektrischer Energie

Lithium-Ionen-Hochleistungs-Elektrizitätsspeicher für PKW

- Einführung -

- Elektromobilität ist seit Jahren ein wachsender Sektor.
- Einsatz von Lithium-Ionen Batterien im Bereich der Elektromobilität
- Anodenmaterialien:
 - Graphit, Silizium, Kupfer (Stromsammler)
- Verschiedene Kathodenmaterialien:
 - Lithium-Manganoxid (LMO)
 - Lithium-Nickel-Mangan-Kobaltoxid (NMC: NMC-111, NMC-433, NMC-532, NMC-622, NMC-811)
 - Lithium-Nickel-Kobalt-Aluminiumoxid (NCA: NCA5, NCA15)
 - Lithium-Eisenphosphat (LFP)



Lithium-Ionen-Hochleistungs-Elektrizitätsspeicher für PKW

- Marktvorschau -

- Abschätzung der Marktanteile der Kathodenmaterialien aufgrund von Marktstudien:
 - Trend zu einem kobaltarmen und nickelreichen Rohstoffeinsatz
 - LFP aufgrund geringer Energiedichten nicht erfolgsversprechend für den Automobilmarkt
 - NMC mit höherem Nickelanteil dominieren den Markt
 - HE-NMC mit Marktanteil ab 2030

Lithium-Ionen-Hochleistungs-Elektrizitätsspeicher für PKW - Rohstoffbedarf -

- Umfangreiche Literaturrecherche von Antriebstechnologien und Fahrzeugsegmenten (Kleinwagen, Kompaktwagen, Oberklasse, leichte und schwere Nutzfahrzeuge, Busse) sowie Batteriekapazität [kWh]
- Spezifische Metallmengen der Batteriekathoden [kg/kWh]
- Gesamtkapazitäten der Mobilitätsszenarien (Neuzulassungen) [GWh]

Fahrzeugsegment	HEV bis 2020	HEV ab 2020	PHEV bis 2020	PHEV ab 2020	BEV bis 2020	BEV ab 2020	FCEV bis 2020	FCEV ab 2020
			Durchschr	nittliche Batt	eriekapazit	ät [kWh]		
Kleinwagen	-	1		24	25	30	1*	1,6*
Kompaktwagen	1	1	11	12	35	51	1*	1,6*
Oberklasse	-	2	12	14	83	83	1	1,6
Leichte	-	-		14	29	50	1*	1,6
Nutzfahrzeuge								
Schwere	-	-	41		307		10*	
Nutzfahrzeuge								
Busse	-	-			193		10*	

HEV: Hybrid-Elektrofahrzeug, PHEV: Plug-In Hybrid-Elektrofahrzeug, BEV: Batterie-Elektrofahrzeug, FCEV: Brennstoffzellen-Elektrofahrzeug

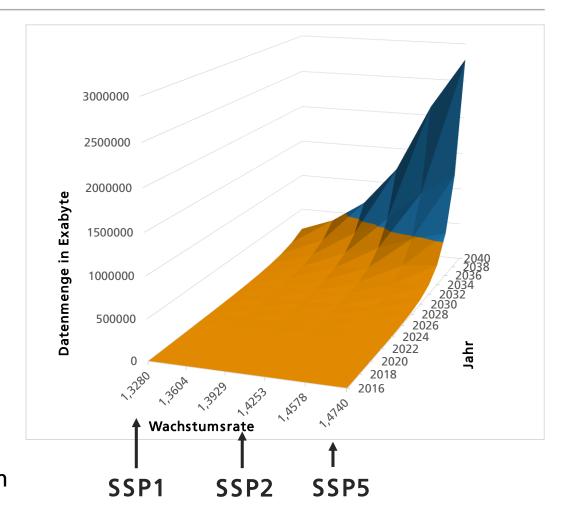
Lithium-Ionen-Hochleistungs-Elektrizitätsspeicher für PKW

- Rohstoffbedarf -

Rohstoff	Weltproduktion 2018 [t]	Verbrauch 2018 [t]	Bedarfsvorschau 2040 [t]				
			SSP1 Szenario (Nachhaltigkeit)	SSP2 Szenario (Mittelweg)	SSP5 Szenario (Fossiler Pfad)		
Kobalt	151.060 (B)	12.751	310.927	270.368	59.830		
Nickel	2.310.000 (B)	32.318	2.003.038	1.741.756	385.436		
Mangan	20.300.000 (B)	11.142	530.471	461.275	102.076		
Lithium	88.641 (B)	7.458	377.320	328.102	72.606		
Grafit	3.207.500 (B)	-	1.019.323	886.359	196.144		
Kupfer	20.561.500 (B)	8.525	451.651	392.737	86.909		

B: Bergwerksförderung (t Inh.)

- Lithium: Verbrauch 2018 ca. 8% der Produktion (2% in 2013), Anstieg um das bis zu 50-fache
- Kobalt: Verbrauch 2018 ca. 8% der Produktion (1% in 2013), Anstieg um das bis zu 25-fache


Lithium-Ionen-Hochleistungs-Elektrizitätsspeicher für PKW - Zusammenfassung/Recycling -

- Rohstoffbedarf für Lithium-Ionen Batterien steigt an.
- Das Recycling von Sekundärrohstoffen aus Altbatterien muss mehr gefördert werden.
- Bestehenden Recyclinganlagen für Lithium-Ionen-Batterien konzentrieren sich hauptsächlich auf die Rückgewinnung von Kobalt und nicht auf die Rückgewinnung von Lithium.
- Durch die neue Batterierichtlinie Recyclingeffizienzen für Lithium-Ionen Batterien und stoffliche Verwertungsquoten für deren enthaltene Rohstoffe Kobalt, Nickel, Lithium und Kupfer festgelegt.
- Grafitrecycling ist noch nicht etabliert, da sich recyceltes Grafit nicht für den Widereinsatz in Batterien eignet.
- Australische Firma meldet erfolgversprechendes Reinigungsverfahren, hochreines Anodenmaterial für Batterien aus gebrauchten Lithium-Ionen-Batteriematerialien zurückzugewinnen.

- Einführung -

- Es gibt nicht "DAS" Rechenzentrum. Verschiedene Querschnitttechnologien und Komponenten sind möglich, hohe Diversität der Bauformen, schneller Wandel der Technik
- Synopse fokussiert auf Speichermedien:
 - Marktanalyse vorhandener und zukünftiger Speichertechnologien
 - Zentrale Komponenten: SSD, HDD, Magnetbänder (!)
 - Bezugseinheit = Datenmenge [Zetabyte = 10²¹ Bytes]
 Problem: Datenmengen sehr veränderbar, exponentielles Wachstum über langen Zeitraum

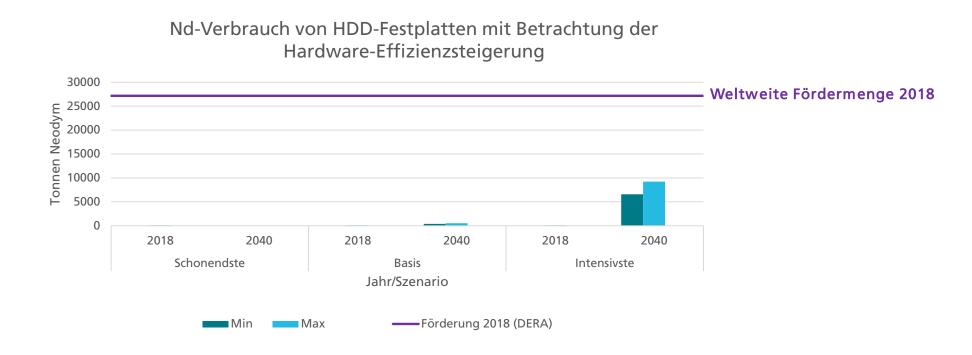
- Szenarienentwicklung -

SSP1 Szenario (Nachhaltigkeit)	SSP2 Szenario (Mittelweg)	SSP5 Szenario (Fossiler Pfad)
 Geringes Datenmengenwachstum (32%/Jahr für Rechenzentren) Hoher Speicherkapazitätsanstieg 	 Mittleres Datenmengenwachstum (39%/Jahr) Mittlerer Speicherkapazitätsanstieg 	 Hohes Datenmengenwachstum
→ Geringster Ressourcenverbrauch	→ Mittlerer Ressourcenverbrauch	→ Hoher Ressourcenverbrauch

Anmerkung: Verteilung der Daten auf die Speichermedien für alle Szenarien aufgrund fehlender Quellen konstant gehalten. Veränderung über Zeit berücksichtigt.

- Rohstoffbedarf für Szenarien -
- Berechnung der Datenmenge pro Datenträgertyp
- Rohstoffbedarf pro Datenmenge:

HDD-Festplatten		SSD-Festplatten		
Kobalt (Co): Chrom (Cr): Platin (Pt): Ruthenium (Ru): Neodym (Nd):	0,34 - 1,0 t/ZB 0,03 - 0,09 t/ZB 0,18 - 0,55 t/ZB 0,3 - 0,4 t/ZB 342 - 480 t/ZB	Silizium (Si): Tantal (Ta):	0,02 t/ZB 0,6 t/ZB	


[Ku, 2017]

- Datenlücke bei den Magnetbändern:
 - Substitution der magnetischen Beschichtung möglich (Barium, Strontium)
 - Beherrschbarkeit einer potenziellen Knappheit wird angenommen.

[Ku, 2017] Ku, A.; Anticipating critical materials implications from the Internet of Things (IOT): Potential stress on future supply chains from emerging data storage technologies. Sustainable Materials and Technologies. 15. 10.1016/j.susmat.2017.10.001.

- Neodymbedarf für HDD-Festplatten -

- Annahme: weiterhin ein verbauter Lese-/Schreibkopf in Relation zur größer werdenden Festplattenkapazität
- Effizienzsteigerung bei Datenspeicherung wird angenommen bis 2040 → Neodymverbrauch bei HDD Festplatten sinkt pro Einheit Datenmenge.

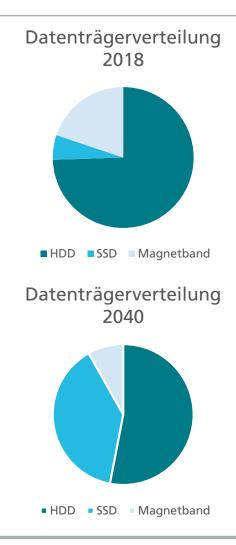
- Rohstoffbedarf -

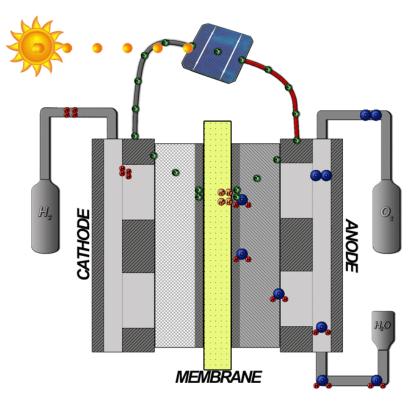
		Verbrauch 2018 [t]	Bedarfsvorschau 2040 [t]					
Rohstoff	Weltproduktion 2018 [t]		Szenario SSP 1		Szenario SSP 2		Szenario SSP 5	
			Min	Max	Min	Max	Min	Max
Kobalt	151.060 (B)	0,1	37	109	142	418	503	1.479
Neodym	23.300 (B)	180	44	63	376	530	6.570	9.220
Platin	190 (B)	0,1	20	60	75	230	266	813
Ruthenium	33 ¹ (R)	0,1	33	44	125	167	444	592
Tantal	1.832 (B)	0,01	48		185		649	

B: Bergwerksförderung (t Inh.)

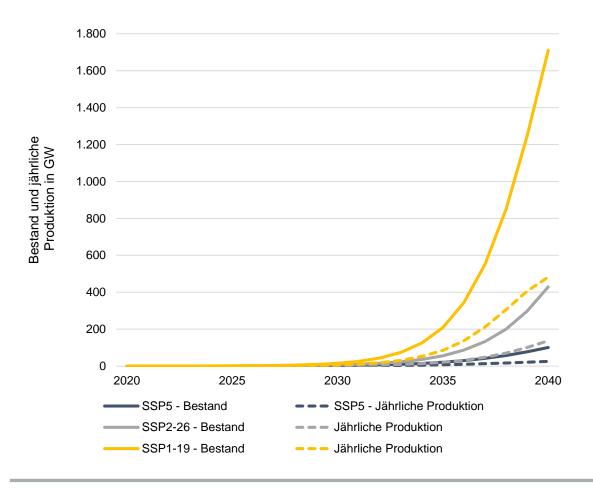
R: Raffinadeproduktion (t Inh.)

¹ Quelle: JM 2020


Anmerkung: Min.-/Max.-Werte ergeben sich laut [Ku, Anthony. (2017)] durch Spannbreite an Rohstoffbedarf bei HDD Festplatten


- Zusammenfassung -

- Foresight basierend auf Datenmengen ermittelt, die den Entwicklungen der SSPs entsprechen können
- Rohstoffbedarf nur für die Speichermedien in Rechenzentren ermittelt


 → Gesamte Technik der Rechenzentren wird spürbar höhere Bedarfe
 haben
- COVID-19-Pandemie hat Entwicklungsvorschub geleistet für digitales Arbeiten und Leben
- Belastbare Studien für 2020 noch nicht verfügbar
- Nachfragewachstum und Technologiesprünge können entgegengesetzte Wirkungen auf den Rohstoffbedarf haben

- Einführung -
- Elektrolysearten im Fokus:
 - Alkalische Elektrolysen (AEL)
 - Polymerelektrolytmembran-Elektrolyse (PEMEL)
 - Festkörperoxid-Elektrolyse (SOEL)
- AEL und PEM tendenziell ähnliche Einsatzfelder; SOEL erfordert Abwärmequelle
- AEL: Stromdichten 0,2 0,8 A/cm². Wirkungsgrade von 50 78 % bei 70 90 °C und < als 30 bar
- PEMEL: Stromdichten 1 2 A/cm², Wirkungsgrad bei 50 – 83 % bei 50-80 °C, ähnliche Drücke wie der AEL
- SOEL: Stromdichten 0,3 1 A/cm² bei 700 850 °C. Wirkungsgrade aktuell bei 45 55 %, durch den Einsatz externer Wärmequellen Steigerung auf ca. 80 %

- Marktvorschau -

- Abhängig von SSP-Szenarien, mögliche installierte Leistungen weltweit:
 - 2030: 3 -15 GW
 - **2040: 100-1710 GW**
- Dekarbonisierung:
 - Industrie
 - Synthetische Kraftstoffe
 - Mobilität (Brennstoffzelle)

- Betrachtete Materialien -

AEL: KOH, Ni

PEMEL: Ir, Pt (Ru)

SOEL: v. a. Yttrium und Zirkonium. Varianten mit anderen Mischmetalloxiden Sc, Ce, Ge u.a.

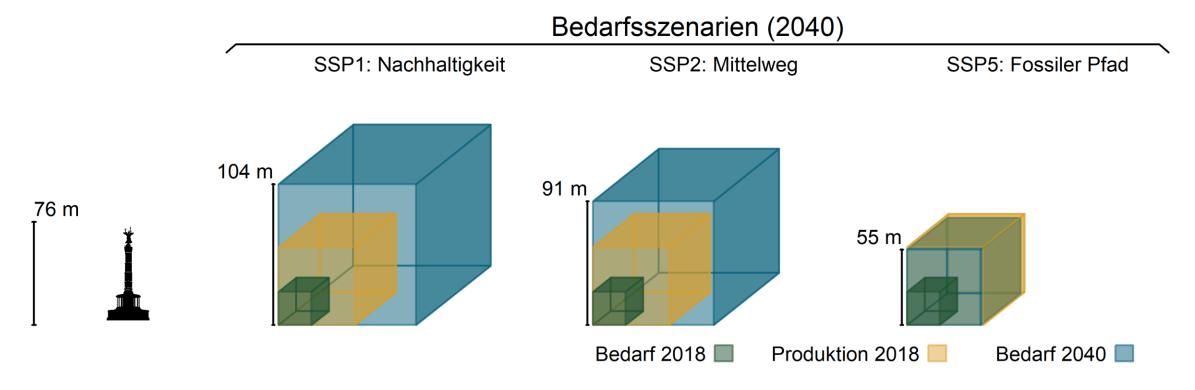
			Bedarfsvorschau 2040				
Rohstoff	Produktion 2018	Bedarf 2018	SSP1 Nachhal- tigkeit	SSP2 Mittelweg	SSP5 Fossiler Pfad		
Iridium	6,8 ¹ (R)	0,01	34	10	2		
Platin	190 (B)	0,00	6	2	0,33		
Zirkonium	1.256.362 ² (B)	10,50	40.300	11.400	2.100		
Scandium	9,1 (B)	0,01	24	7	1		
Yttrium	7.600 (B)	0,74	2.800	800	150		

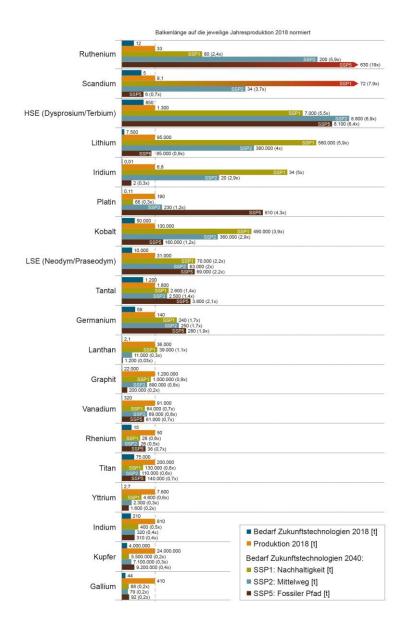
B: Bergwerksförderung (t Inh.)

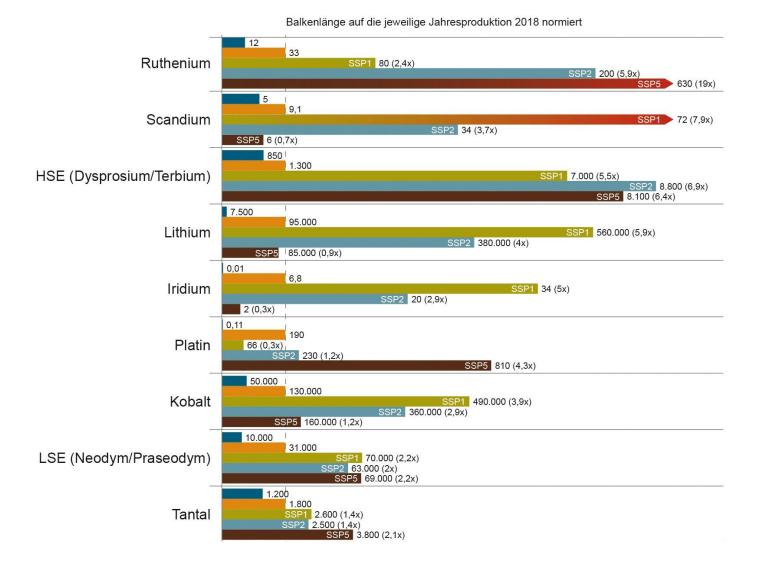
R: Raffinadeproduktion (t Inh.)

¹ Quelle: JM 2020, ² Produktion Zirkoniumminerale

- Zusammenfassung -

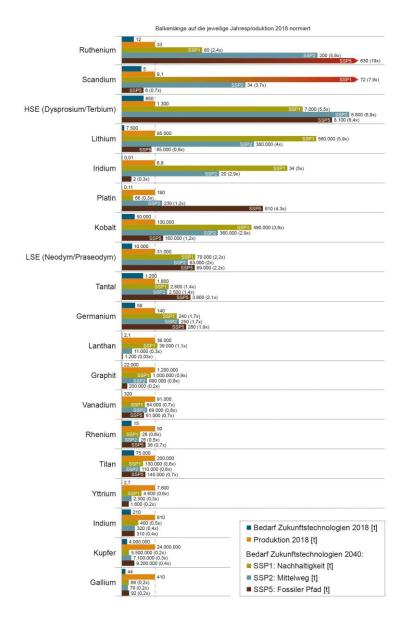

- AEL: etabliert Technologie, große Entwicklungssprünge fraglich
- PEMEL: spez. Iridiumbedarf wird geringer
- SOEL: unterschiedliche Temperaturniveaus, unterschiedliche Technologien, flexible Materialauswahl, Technologieentwicklung unsicher
- In der Studie unterstellte Verteilung 2040: 85 % AEL, 10 % PEMEL und 5 % SOEL
- Derzeit Wasserstoff-Hype (Wasserstoffstrategien EU + DE)

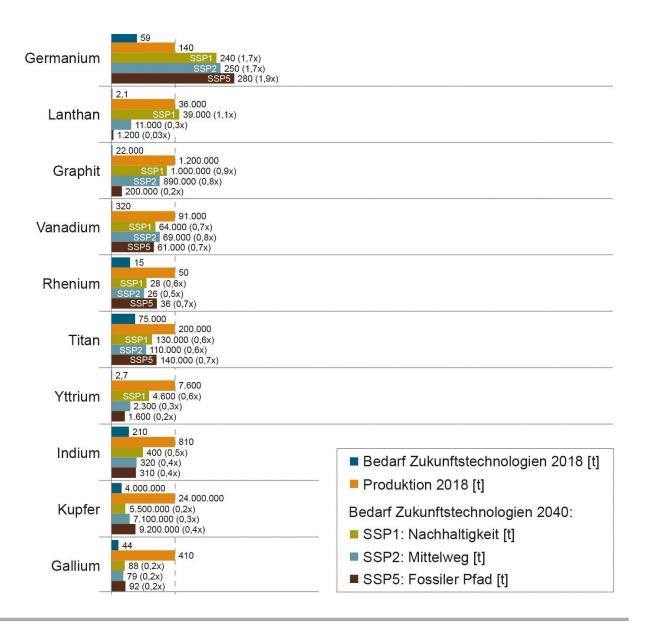




Ergebnisse: Produktion 2018 und Bedarf von Lithium für Zukunftstechnologien 2018 und 2040

Lithium







Seite 23

Seite 24

Vielen Dank für die Aufmerksamkeit!

© http://s430.photobucket.com/user/7ustaGirl

Dr. Frank Marscheider-Weidemann

Fraunhofer-Institut für Systemund Innovationsforschung ISI **2** 0721 6809 -154

mw@isi.fraunhofer.de

Franziska Maisel

Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

2 030 46403-293

franziska.maisel@izm.fraunhofer.de

