Rohstoffrisikobewertung – Lithium 2030 - Update -

Michael Schmidt

Deutsche Rohstoffagentur (DERA)
in der Bundesanstalt für Geowissenschaften und Rohstoffe

Die Bundesanstalt für Geowissenschaften und Rohstoffe ist eine technisch-wissenschaftliche Oberbehörde im Geschäftsbereich des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK).

INTRODUCTION

DERA Risk Analysis Lithium 2017

- Extremely dynamic development in the battery sector.
- EV adoption much faster than anticipated.
- Possible ban of ICE vehicles.
- Off-grid energy storage demand gaining momentum.
- Very strong demand and demand projections.
- Prices at record levels.
- China with a strong strategic position.
- Europe as an EV hotspot.
- Global trend towards added value in countries of origin.

LITHIUM - CURRENT SUPPLY SCHEME

Source: AMG Lithium 2022

Source: SQM 2022

Hard Rock (60 %)

Brine (40 %)

Source: EnBW 2022

Geothermal Brines (xx % in 20xx)

Different sources yield the same products through different processing routes, thus different environmental footprints.

APPLICATIONS AND DEMAND 2020

Demand 2020: 74,183 t Lithium

Demand 2030*: 316,307 t Lithium

* Demand Scenario 2 based on SSP2

PRICE DEVELOPMENT

Source: BGR 2022 Source: Pilbara Minerals 2022

SUPPLY 2020

GLOBAL NET-TRADE

GLOBAL NET-TRADE

GLOBAL NET-TRADE

GEOPOLITICAL RISKS OF GLOBAL NET-EXPORTS 2021

GEOPOLITICAL RISKS OF GERMAN IMPORTS 2021

DEMAND 2030 (WHO KNOWS....)

Quo Vadis E-Mobility??

- Extremely dynamic developments.
- Demand will be dominated by LIB.
- E-Mobility as major demand driver.
- China is key.
- EU and USA strong development.
- Regulatory frameworks will impact growth thus demand.
- Customer acceptance and infrastructure are important factors.
- Technological advances play a role.
- Sustainable use of lithium as demand driver (E-SUV vs. small cars).
- Global economy, inflation and energy crisis.
- War in Ukraine.

DEMAND 2030

- **Top 3** Applications 2020:

- Lithium-Ion-Batteries (LIB)
- Glass/Glass Ceramics/Ceramics (aggregated)
- Lubricating Grease
- Total demand growth until 2030: CAGR of 15.6 22.4 % p.a.
- Highest demand growth towards 2030 in Lithium-Ion-Batteries (18.9 26.5 % p.a.).
 - E-Mobility: CAGR of **18 27.9** % p.a. (Three different scenarios)
 - 3C-Applications: CAGR of 5.3 % p.a.
 - Tools (incl. Drones, e-Bikes): CAGR of 22.6 % p.a.
 - Energy storage (ESS): CAGR of 29.1 % p.a.
- Glass/Glass Ceramics/Ceramics (aggregated): CAGR of **3.9** % p.a.
- Lubricating Grease: CAGR of 3.9 % p.a.
- Other: CAGR of 3.4 % p.a.

DEMAND 2030

Source: BGR 2022

SUPPLY/DEMAND SCENARIO 1 (LOW CASE)

Supply 2020: 82.000 t

Supply 2030: 217,889 t

Demand 2030: 426,721 t (Scenario 1)

316,307 t (Scenario 2)

558,780 t (Scenario 3)

Supply/Demand Balance

- Scenario 1: - 208,832 t Lithium

- 95.8 %

- Scenario 2: - 98,418 t Lithium

- 45.2 %

- Scenario 3: - **340,891** t Lithium

- 156.5 %

SUPPLY/DEMAND SCENARIO 2 (HIGH CASE)

Supply 2020: 82.000 t

Supply 2030: 357,680 t

Demand 2030: 426,721 t (Scenario 1)

316,307 t (Scenario 2)

558,780 t (Scenario 3)

Supply/Demand Balance

- Scenario 1: - **69,040 t** Lithium

-19.3 %

- Scenario 2: **41,370 t** Lithium

11.6 %

- Scenario 3: - 201,100 t Lithium

-56.2 %

SUPPLY/DEMAND SCENARIOS IN A NUTSHELL

SUPPLY 2030

Scenario 1

HHI: 2,795

GLR: 0.74

H/B = 53.7 % / 46.4 %

Scenario 2

HHI: 1,938

GLR: 0.69

H/B = 62.6 % / 37 %

Source: BGR 2022

GLOBAL SECONDARY SUPPLY FROM SPENT EV BATTERIES

Key assumptions

- EV Batteries only.
- Return matrix based on demand 2020 – 2030
- 50 % return after 8 yrs.
- 60 % return after 10 yrs.
- 90 % return after 12 yrs.
- 10 % lost due to...
- Collection rate of 70 %.
- Recycling rate 25 %, 75 %.
- No secondary life.
- Material suitable for LIB.
- Processes are economically and ecoligically viable.

EUROPE AS A NEW EV INDUSTRY HOTSPOT

Demand 2030

@ 1.309 GWh = **127,300** t*

@ 1.000 GWh = **97,140** t*

@ 1.000 GWh = **72,500 t*** (75 % utilisation)

^{*} Based on internal assumptions for cathode chemistry, cathode mix towards 2030, vehicle size and battery size.

SUPPLY/DEMAND: A EUROPEAN PERSPECTIVE

SUPPLY/DEMAND: A EUROPEAN PERSPECTIVE (SECONDARY SUPPLY)

EU Targets 2030/2035

- Key assumptions equal to global scenarios.
- 70 % LIB collection rate
- 70 % Lithium recovery rate
- 4% secondary lithium content in LIB (2030)
- content in LIB (2035)

SUSTAINABILITY

Contents lists available at ScienceDirect

Resources, Conservation & Recycling

journal homepage: www.elsevier.com/locate/resconrec

Full length article

Jarod C. Kelly*, Michael Wang, Qiang Dai, Olumide Winjobi

Table 6
Results of LCA for lithium concentrates and chemical products from brine and ore.

Lithium source	Stage of evaluation	GHG emissions	Energy consumption	Freshwater consumption
Brine	Lithium concentration	0.08-0.18 t CO ₂ e/tonne lithium concentrate	1300–2800 MJ/ tonne lithium concentrate	2.95–7.30 m³/tonne lithium concentrate
	Production of Li ₂ CO ₃ from lithium concentrate*	2.7 – 3.1 tonne CO ₂ e/ tonne Li ₂ CO ₃	30,000–36,000 MJ/tonne Li ₂ CO ₃	15.5 - 32.8 m^3 /tonne Li_2CO_3
	Production of LiOH•H ₂ O from lithium concentrate	6.9 − 7.3 tonne CO ₂ e /tonne LiOH•H ₂ O	76,600−82,900 MJ/tonne LiOH•H ₂ O	31−50 m³/ tonne LiOH•H ₂ O
Ore	Spodumene concentration Production of	~0.42 tonne CO ₂ e/tonne spodumene 20.4 tonne	5500 MJ/tonne spodumene 218,000 MJ/	3.4 m³/tonne spodumene 77 m³/tonne
	Li ₂ CO ₃ from spodumene*	CO ₂ e/tonne Li ₂ CO ₃	tonne Li ₂ CO ₃	Li ₂ CO ₃ 69 m ³ /tonne
	Production of LiOH•H ₂ O from spodumene	15.7 tonne CO₂e/tonne LiOH•H₂O	187,200 MJ/ tonne LiOH∙H ₂ O	69 m⁻/tonne LiOH•H₂O

Source: https://www.sciencedirect.com/science/article/pii/S0921344921003712

FINAL THOUGHTS ON EUROPE

- Europe is becoming is an major hotspot in the EV industry.
- Currently strong import dependency for lithium chemicals (i.e.: LiOH, Li₂CO₃).
- Import has a certain CO₂ footprint which depends on the source (Brine vs. Hard Rock).
- Downstream industry starts to develop (Refineries, Converter etc.).
- European lithium demand in 2030 approx. **410 kt LCE** (≈77 kt Li-cont.) [1,000 GWh EV @ 75 % scenario]
- Lithium projects in: Czech Repubic, Germany, Portugal, Spain, Austria, Finnland.
- Additionally (non EU member projects): Serbia (Jadar, Rio Tinto [ON HOLD]; Valjevo), Bosnia (Arcore).
- Self sufficiency in the given Scenario **27 34** % in 2030.
- Secondary supply as an alternative in the given Scenario 2.5 10.6 % in 2030 (EU target possible).
- Import dependance will remain.

FINAL THOUGHTS - THE GREAT DISCONNECT -

- The Lithium market is a specialty chemicals market and not conventional mining.
- Surplus in mine supply does **NOT** necessarily translate into sufficent chemical supply.
- Announced mine capacity is **NOT** equal to refining (chemical) capacity.
- Announced capacities and timelines of projects are "numbers" and sometimes wishfull thinking.
- Derived chemical supply may or may not be directly suitable for downstream applications.
- In **Scenario 1** (low case) roughly **54** % of supply is hardrock based.
- In Scenario 2 (high case) roughly 63 % of supply is hardrock based.
- This material needs to be converted into lithium chemicals. → Mostly China
- Therefore conversion capacity of spodumene will be key for future supply.
- Sustainability issues (Hard rock vs. Brine vs. Geothermal Brines).
- Many new brine based projects plan to introduce DLE technology for production that is yet not comercially applied in the industry.
- Supply uncertainties in many countries due to legal and regulatory issues (i.e. Mexico, Bolivia, Chile)

FINAL THOUGHTS

- Few major global players and China is dominant in the downstream sector with a clear strategy.
- Current lithium prices on all-time high levels (high price volatility).
- Potential key lithium salts classification as REPROTOX CAT 1A by the EU proposed by ANSES (France).
- Lithium demand for batteries (EVs) as major driver (≈ 90 % of total lithium demand in 2030)
- Primary lithium supply has to increase from 80 kt in 2020 to >320 >550 kt in 2030 (4 to 7 fold).
- Demand projections difficult due to market dynamics (320 560 kt in 2030)
- Supply gap towards 2030 if no action from industry. Hard rock will dominate the market in 2030.
- Lithium is geologically not scarse. Sufficient supply depends on timely development and investment.
- Mine lead time 4 10 years. Refining lead time 12 24 months.
- CAPEX for 3 5 kt Lithium capacity approx. 300 500 Mio. € depending on location etc.
- Secondary supply will have to contribute and needs to be developed now (**DESIGN FOR RECYCLING**).
- Production and import of lithium chemicals has a certain water and CO₂ footprint which varies and depends mostly on the source (Brine vs. Hard Rock). ESG issues (high CO₂ emissions, mine and processing wastes).

Lithium

"Is the Hype over?"
NO…
It just started again…

Rohstoffrisikobewertung – Lithium 2030 - *Update* –

THANK YOU

Michael Schmidt Deutsche Rohstoffagentur (DERA)

in der Bundesanstalt für Geowissenschaften und Rohstoffe

Die Bundesanstalt für Geowissenschaften und Rohstoffe ist eine technisch-wissenschaftliche Oberbehörde im Geschäftsbereich des Bundesministeriums für Wirtschaft und Klimaschutz (BMWK).

