

3D Seismic Imaging for a Better Understanding of Deep-Seated Deposits

DMT GmbH & Co. KG – Essen Dr. Dirk Orlowsky

Content

- 3D-seismic Spremberg Initial geological situation of the survey area and objectives of the 3D-seismic survey
- Phases of the 3D-seismic survey
- Description of the survey; Planning; Parameters; Techniques; Characteristics
- Seismic Data Processing; Special Procedures
- Interpretation of the results

Initial Geological Situation and Objectives of the 3D Seismic Survey

Geological situation

Basis about 80 drill holes

Goals of the seismic survey

- Identification of the Copper Shale horizon in depths between 700 m and 1200 m
- Description of the layering down to a depth of about 1.500 m
- Generation of a detailed geological 3Dmodel
- Identification of possible fault structures as basis for an optimized mine planning to reduce risks and costs for the construction of shafts and underground roadways.

Phases of 3D Seismics (onshore)

Planning / public relations work

Permitting

Preparation phase

Topographical surveying

Mobilization of survey crew

Field measurements

Survey phase

Data processing

Interpretation

Modeling / Imaging

Interpretation phase

Preparation Phase

- Planning
- Scouting
- Map material
- Survey program
- Coverage diagrams
- Scheduling
- Equipment needs
- Manpower needs

Preparation Phase

- Public Relations Work
- Press conferences
- Meeting with local inhabitants
- Preparation of flyers
- Information event

WÄRME UND STROM AUS UNSERER ERDE

FÜR SIE

3D Seismics Spremberg

- Technical Parameters

Field parameters

Area: 75 km²

Survey: February 11th to March 16th2011

- Seismic source: 2 Mertz M12 Vibrators;
 Peak force 30,000 lbs, each
- 12 active geophone lines with 1872 active channels, 10.500 recording points, 240 m line distances.
- 6.800 Vibro-points, 390 m line distances
- 10 s sweep length, 10-108 Hz sweep, 3 s recording time, 2 ms sampling rate;
- Bin-size: 15 x 15 m

Survey Phase

- Integrated Field Work

Required Certificates

- QHSE Standard
- SCC certificate
- IAGC Standard
- DIN 9001 / 14001
- Fair Company
- Job & Family
- Top employer for engineers
- Presentation of a safety concept

DIN EN ISO 14001 zertifiziert

Impressions from the Survey Site

Vibro Crew

Impressions from the Survey Site

Cable Crew

German Day at PDAC 2014 "3D-Seismic Imaging"

www.dmt.de

Impressions from the Survey Site

Traffic Regulation

German Day at PDAC 2014 "3D-Seismic Imaging"

www.dmt.de

3D Seismic Data Processing

Approx: 75 km² - 14 million data traces Processing time: several man-months

Data processing processes

- 1. Transcribe to internal format
- 2. Geometry setup and application
- 3. Minimum phase transformation
- 4. First-break mute
- 5. Gain recovery
- 6. Trace editing interactively and/or automatically
- 7. Suppression of shot domain noise dips by FK filtering + removable AGC
- 8. Deconvolution, preferably surface consistent, according to test results.
- 9. Basic static correction (apply to floating datum only)
- 10. First break picking and refraction statics
- 11. Preliminary velocity analysis
- 12. (Interactive QC display of brute stack as final check for bad traces + geometry errors)
- 13. Computation and application of 2D residual statics, up to 3 passes
- 14. Improvement of NMO correction and mute
- 15. Application of AGC, if necessary
- 16. Removal of NMO correction
- 17. CRS processing and/or PSD migration
- 18. 2D/3D post stack FD time migration
- 19. SEGY output of raw CRS stack, time migrations
- 20. Application of zero-phase filter (statistically derived from seismic)
- 21. Time variant filter and scaling
- 22. SEGY output of final CRS stack, time migrations
- 23. Section plot of final CRS stacks and depth migrations

Migration of a Conventional 3D Stack

Migration of a 3D CRS Stack

CRS = Common Reflection Surface

Migration of a Conventional 3D Stack

German Day at PDAC 2014 "3D-Seismic Imaging"

www.dmt.de

Migration of a 3D CRS Stack

CRS = Common Reflection Surface

Result of 3D Seismic Data Processing

Seismic cube

Interpretation Phase

Geological Interpretation – 3D Modelling – 3D Imaging

- Structural interpretation
- Integration of exploration information from boreholes
- Generation of 3D block models / imaging
- Volumetric calculations and reservoir characterization
- Team working of geologists & geophysicists

Generation of a Synthetic Seismogram

Needed information

- Velocity log
- Density log
- Vertical Seismic Profiling (VSP)
- Velocity * Density = Impedance
- Impedance determines seismic amplitudes
- Synthetic seismogram = Model of a recorded seismic signal at the location of the borehole

Calibration of Seismic Reflectors

Borehole Location "Spremberg 136/09"

Character of Different Reflectors

- Basis Tertiary: strong positive amplitudes; represents the discordance between nearly horizontal tertiary elements and the underlying dumping Mesozoic elements
- Anhydrite: most strongest positive amplitudes; locally a little weak.
- Copper Shale: varying phases between two strong amplitudes of Anhydrite and Pre-Zechstein.

Challenging Interpretations

- Large intervals "chaotic structures" in the area of Triassic elements
- Strong changing pattern, especially at small tectonic structures
- Varying thicknesses and changing character of Anhydrite sequences

3D image of the Copper Shale Horizon

Depth structure of the Copper Shale Reflector

3D-Image of the Copper Shale Horizon

Summary and Conclusions

- 3D-seismic imaging is an important tool to describe the geological situation of deep-seated deposits
- The 3D geological image can be used for an optimized mine planning to reduce risks and costs for the construction of shafts and underground roadways
- 3D-seimic surveys need to be well adapted to the local circumstances in the survey area
- Seismic data processing and interpretation of the results have to be calibrated at borehole positions
- In Spremberg in eastern Germany the 3D-seismic survey led to a more detailed knowledge about the Copper Shale layer
- On the basis of the results in Spremberg now the planning of the mine can start

Thank you for your attention &

Glückauf!

Acknowledgement

Many thanks to Elke Groterhorst and Ralph Braumann from the KSL Kupferschiefer Lausitz GmbH

