

Antimony – From Active Volcanoes to Old Shields

Metallogenesis, Ore Deposits, Mineralogy

B1.2 Ulrich Schwarz-Schampera

Antimony Abundance in the Earth

- Earth's crust : 0.2 ppm in the continental crust (≤ As, TI);
- ➤ Concentrations in oceanic basalts: 0.02 0.8 ppm Sb;
- ➤ Moderately siderophile element, moderately incompatible and lithophile (such as the light rare earth elements) during magmatic processes;
- > The volatile behaviour during subduction processes and crust formation, similar to Pb;
- > The meteoritic abundance 0.142 ppm for chondrite (CI);
- Seawater contains 0.15 ppb Sb;
- Geochemically related to Hg, As;
- ➤ In ore-forming processes highly volatile, chalcophile in character;
- ➤ An enrichment of about 150,000 times its crustal content is required to reach potentially economic concentrations of about three weight per cent (3 wt.-%), or 30 kg of antimony per tonne of antimony ore.

- > Active continental plate margins;
- > Prominent antimony belts (China, South America, Europe)
- > Highest concentrations commonly in low-temperature magmatic hydrothermal systems;
- > Typically enriched in the distal portions of these systems at shallow depths and close to surface;
- > Associated with calc-alkaline to peralkaline, porphyritic felsic to intermediate volcanic and intrusive wall rocks.

- 2 Eagle Creek
- 3 Becker-Cochran
- 4 Morris
- 5 Sullivan
- 6 Coeur d'Alene district
- 7 Fencemaker
- 8 Belledune/Lake George
- 9 Beaver Brook
- 10 Sonora district
- 11 Coahuila district
- 12 Nuevo Leon district
- 13 Zacatecas district

- 15 Queretaro district
- 16 Ixtahuacan (3 deposits)
- 17 Minera Halcon de Gorgor
- 18 Cobriza, La Oroya
- 19 Lipichi district (>10 deposits)
- 20 San Jose, Oruro district
- 21 Potosi department (>20 deposits) 34 Kütahya Province
- 22 Pabellon
- 23 Alto do Sobrido
- 24 San Antonio
- 25 Montagne Noi
- 26 Germany (3 deposits)

- 28 Schlaining, Burgenland
- 29 Krasna Hora, Bohemia
- 30 Slovakia (2 deposits)
- 31 Kostajnik-Krupanj district 44 Msauli, Barberton
- 32 Allchar (Alsar) district 33 Izmir Province

- 35 Nigde Province
- 36 Tokat Province
- 37 Nikitovaka 38 Beni-Msala
- 39 Tourtit

- 41 Kwekwe district
- 42 Consolidated Murchison
- 43 Morning Mist, Barberton
- 45 Tajikistan (3 deposits)
- 46 Kassan / Chauvay
- 47 Kadamzhay / Khaidarkan
- 48 Olimpiada
- 49 Sentachan
- 50 Sarylakh
- 51 Changbaishan-Yinshan-Tianshan belt (10 deposits)

- 53 Western Yunnan Tibet belt (10 deposits)
- 54 South China belt (500 deposits)
- 55 South China belt (500 deposits)
- 56 South China belt (500 deposits)
- 57 South China belt (500 deposits)
- 58 Thailand (5 deposits)
- 59 Bau district, Sarawak
- 60 Blue Spec, Western Australia
- 61 Hillgrove, New South Wales
- 62 New South Wales (3 deposits)
- 63 Costerfield, Victoria

Antimony Deposit Types

Table 3 Size and grade of the major types of antimony deposits (grades and tonnages are very variable between deposits and figures given are indicative only).

Deposit type	Deposit size range (metric tonnes)	Typical grade (Sb ₂ S ₃ %)	Estimated antimony metal content of known deposits (tonnes)	% of total
Gold-antimony (epithermal) vein-type	10⁴–10 ⁶	0.1–3.5	580 000	20
Carbonate replacement	10 ⁶ –10 ⁸	1.5–25	2500000	60
Reduced-magmatic	10 ⁶ –10 ⁸	0.1–1.5	320000	10
Polymetallic base metal vein	10 ⁴ –10 ⁶	0.1–0.5	175000	8
Hot springs	10 ⁴ –10 ⁶	0.1–0.2	2500	2
			3 577 500	100

Antimony Deposit Types

Deposit type	Brief description	Features	Examples
Gold-Antimony	Medium to large, low-grade	Deposits lack significant copper,	Hemlo (Canada),
(Epithermal)	stockwork-type quartz-stibnite	lead, zinc, and nickel sulphide	Olimpiada (Russia),
Vein-Type	(tetrahedrite) veinlets and	and sulfosalt minerals; Sb-As-	
	disseminations in shale,	Hg-Au-Ag-Te assemblage of	
	calcareous shale, limestone,	the high low-sulfidation subtype	
	quartzite, volcanic, granite (or	in epithermal environments;	
	metamorphic equivalents) in	veins of quartz cored by massive	
	greenstone belts of a potential	stibnite; wall rock equilibration of	
	subduction zone and island	magmatic fluids; transitions to	
	arc setting.	mesozonal (orogenic) deposits.	

Deposit type	Brief description	Features	Examples
Greenstone-	Numerous small to large size,	Deposits may lack significant	Xikuangshan (China),
hosted	high-grade vein-stockwork	base or precious metal	Kadamdzhay (Russia),
quartz-	deposits of almost pure	assemblages; lenticular bodies	Antimony line (South
carbonate	stibnite in metasedimentary	of quartz and stibnite within	Africa), Olympiada
vein and	and highly altered volcanic	limestone and intense quartz-	(Russia), Indarama Mine,
carbonate	sequences. Syn- to post-	carbonate alteration; silicification	Belingwe Star
replacement	collisional tectonic settings.		(Zimbabwe)

edge of Selwyn Basin

Deposit type	Brief description	Features	Examples
Reduced- Magmatic	Regional arrays of sheeted auriferous quartz-carbonate veins in the carapace and volcanic surroundings of causative plutons; small to intermediate size proximal As-Sb-Au veinlets. Weak post-collisional extension behind a thickened continental margin.	Deposits occur in a mineral system with an outward zonation of an Au-Bi-Te-W-As-Sb-Ag-Pb-Zn assemblage; skarn-like and replacement bodies and veins; associated with volatile-rich quartz monzonite melts.	Tintina Au province (USA, Canada), Timbarra, Kidston, (Australia), Niuxinshan (China)

Deposit type	Brief description	Features	Examples
Polymetallic	Small to medium polymetallic	Polymetallic base metal and	Cobalt district (Canada),
Base Metal	deposits; structurally	Ag-rich ores; densely	Bolivian Sb belt,
Vein	controlled in postcollisional	intergrown ore minerals	Bau district (Malaysia)
	vein breccia zones of clastic	(telescoping); Sb hosted by	
	metasedimentary or magmatic-	stibnite, tetrahedrite and a	
	dominated terranes;	variety of simple and complex	
	mineralization by basinal	sulphosalts; quartz-carbonate	
	brines.	gangue.	

Deposit type	Brief description	Features	Examples
Hot spring	Siliceous precipitates deposited	Low temperature fluids forming	Shallow marine
exhalative	by hydrothermal fluids, hot	sulphide and sulphosalt	hydrothermal vents and
	springs, fumaroles;	segregations in altered	magmatic fumaroles at
	volcanic activity	intermediate to felsic wall rocks;	Kudryavyi, Kuril islands
		Sb co-enrichment with As and Hg	(Russia),
		(Te, Se, Au, Ag)	Merapi (Indonesia),
			Taupo volcanic zone (NZ)

Table 2 Compilation of defined antimony minerals with antimony concentrations greater than 70% Sb and additional antimony minerals which typically occur in antimony-bearing ore deposits.

Mineral	Formula	% Sb
Antimony	Sb	100.00
Senarmontite	Sb ₂ O ₃	88.39
Valentinite	Sb ₂ O ₃	83.53
Nisbite	NiSb ₂	80.58
Onoratoite	Sb ₈ O ₁₁ Cl ₂	79.78
Cervantite	Sb ³⁺ Sb ⁵⁺ O ₄	79.19
Stibiconite	Sb ³⁺ Sb ⁵⁺ ₂ O ₆ (OH)	76.37
Sarabauite	CaSb ₁₀ O ₁₀ S ₆	75.62
Kermesite	Sb ₂ S ₂ O	75.24
Coquandite	$Sb_6O_8(SO_4)\cdot(H_2O)$	75.11
Stibnite	Sb ₂ S ₃	71.68
Breithauptite	NiSb	67.47
Stibarsen	SbAs	61.91
Gudmundite	FeSbS	58.07
Ullmannite	NiSbS	57.29
Berthierite	FeSb ₂ S ₄	56.94
Aurostibite	AuSb ₂	55.28
Chalcostibite	CuSbS ₂	48.81
Jamesonite	Pb ₄ FeSb ₆ S ₁₄	35.39
Tetrahedrite	(Cu,Fe) ₁₂ Sb ₄ S ₁₃	29.64
Famatinite	Cu ₃ SbS ₄	27.63
Dyscrasite	Ag ₃ Sb	27.34
Boulangerite	Pb ₅ Sb ₄ S ₁₁	26.44
Bournonite	PbCuSbS ₃	24.91
Pyrargyrite	Ag ₃ SbS ₃	22.48
Freibergite	(Ag,Cu,Fe) ₁₂ (Sb,As) ₄ S ₁₃	18.93
Vinciennite	Cu ₁₀ Fe ₄ Sn(As,Sb)S ₁₆	3.83

Thank you very much for your attention!

Questions?

B1.2 Ulrich Schwarz-Schampera

