Biomining in giant mining operations: state-of-the-art and potential for development

Prof. Dr. Bernhard Dold
Departamento de Geología,
Universidad de Chile, Santiago de Chile
E-mail: bdold@ing.uchile.cl

Mining and Environment

Acid Mine Drainage (AMD)
Dr. Bernhard Dold: Treatment, Remediation, and Prevention of Acid-Rock Drainage (ARD)
Dr. Bernhard Dold: Treatment, Remediation, and Prevention of Acid-Rock Drainage (ARD)

\[\text{FeS}_2 + \frac{7}{2} \text{O}_2 + \text{H}_2\text{O} \rightarrow \text{Fe}^{2+} + 2\text{SO}_4^{2-} + 2\text{H}^+ \]

Fresh tailings
pH 10

3 months of oxidation
pH 7-8

\[\text{Fe}^{2+} + \frac{1}{4} \text{O}_2 + \text{H}^+ \leftrightarrow \text{Fe}^{3+} + \frac{1}{2}\text{H}_2\text{O} \]

\[\text{Fe}^{3+} + 3\text{H}_2\text{O} \rightarrow \text{Fe(OH)}_3 + 3\text{H}^+ \]

Fe-hydroxide

py
Dr. Bernhard Dold: Treatment, Remediation, and Prevention of Acid-Rock Drainage (ARD)

CT5 Talabre - Chuquicamata

FeS₂ + 14 Fe³⁺ + 8H₂O → 15 Fe²⁺ + 2SO₄²⁻ + 16H⁺
=> FeS₂ + 15/4O₂ + 7/2H₂O → Fe(OH)₃ + 2SO₄²⁻ + 4H⁺
Dr. Bernhard Dold: Treatment, Remediation, and Prevention of Acid-Rock Drainage (ARD)

Acidobacterium-like
Sulfobacillus-like
Acidiphilium sp.
Acidithiobacillus

Leptospirillum, Acidithiobacillus

Gene sequencing and identification

(Diaby et al., 2007)
Dr. Bernhard Dold: Treatment, Remediation, and Prevention of Acid-Rock Drainage (ARD)

Role of LMWCA in Fe-cycling

- **pH**
- **Eh**
- Oxidation zone
- Oxidation front
- Neutralization zone
- Primary zone
- Heterotrophs
- Autotrophs
- Fe(III)
- Fe(II)
- LMWCA
- CO₂
- H⁺
- e⁻
- +d

Dold et al. (2005) ES&T
Dr. Bernhard Dold: Treatment, Remediation, and Prevention of Acid-Rock Drainage (ARD)

Characteristics:
- Liberation of Fe^{2+} and Fe^{3+}
- Reduction of Fe^{3+} and high mobility of ferrous at still neutral pH
- Additional SO_4^{2-}, As, Mo liberation
- Autooxidation when Fe^{2+}-rich solution outcrop in oxidizing environment to Fe^{3+} and subsequent hydrolysis = > AMD $\text{Fe}, \text{SO}_4^{2-}$-rich

1. **Active AMD plume**
 - Characteristics: oxyanions-rich e.g. SO_4^{2-} due to Dissolution e.g. anhydrite, gypsum
 - Liberation of Mo and As in the alkaline flotation

2. **Starting oxidation Fe$^{2+}$-rich plume**
 - Characteristics: all neutralization potential is consumed. Sulfate and metal (bi- and trivalent)-rich solutions.

3. **Advanced low pH drainage**
 - Characteristics: all SO_4^{2-}, As, Mo oxidation and hydrolysis = > AMD $\text{Fe}, \text{SO}_4^{2-}$-rich

4. **Secondary AMD plume**
 - Characteristics: all SO_4^{2-} consumption, sulfate (bi- and trivalent)-rich

Sulfide oxidation & metal leaching

- Decades to centuries
- Thousand or millions
- EXOTICA DEPOSITE
- CHUQUICAMATA DEPOSITE
- AMD plume
- LEACHED ZONE
- MINERALIZED GRAVEL
- MINERALIZED BEDROCK
- MINERALIZED GRAVEL
- BARREN GRAVEL
- 6 km
- 4.5 km
- OXIDATION ZONE
- ENRICHED ZONE
Dr. Bernhard Dold: Treatment, Remediation, and Prevention of Acid-Rock Drainage (ARD)

Goal: Sustainable Mining

Mine Waste Management

- Sulfate Reducing Bacteria (SRB)
 - Leptospirillum
 - Acidithiobacillus
 - Acidiphilium sp.
 - Acidobacteriaceae

Supergene Enrichment

- Exploration
 - Increased of Metal recovery
 - Less contamination of CO₂ and SO₂
 - and less energy & water

Biomining

- Controlled Management, Prevention, Remediation

Source

- Liberation: Oxidation Dissolution
 - Mineralogy, Geology, Geochemistry, Microbiology

- Mobilization
 - Hydrogeology
 - => contamination
 - hydrogeochemistry, hydrodynamic flow

- Retention: Reduction Precipitation Sorption
 - => mineralogy, geology, geochemistry, microbiology

Sink
Table 1: Average concentrations of metals in the earth crust with the average concentrations exploited by mining and the enrichment factors. Some concentrations of element still present in mine tailings are shown to highlight the still strong enrichment of these elements in the waste material. Modified after (Evans, 1993).

<table>
<thead>
<tr>
<th>Metal</th>
<th>Ø Crust (%)</th>
<th>Ø by mineral exploitation (%)</th>
<th>Enrichment Factor</th>
<th>Ø In mine tailings</th>
<th>Enrichment Factor tailings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>0.005</td>
<td>0.4</td>
<td>80</td>
<td>0.1 – 0.3</td>
<td>20 - 60</td>
</tr>
<tr>
<td>Ni</td>
<td>0.007</td>
<td>0.5</td>
<td>71</td>
<td>0.2</td>
<td>28.4</td>
</tr>
<tr>
<td>Zn</td>
<td>0.007</td>
<td>4</td>
<td>571</td>
<td>2 – 4</td>
<td>275 - 571</td>
</tr>
<tr>
<td>Mn</td>
<td>0.09</td>
<td>35</td>
<td>389</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sb</td>
<td>0.0002</td>
<td>0.5</td>
<td>2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td>0.01</td>
<td>30</td>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pb</td>
<td>0.001</td>
<td>4</td>
<td>4000</td>
<td>1 - 2</td>
<td>1000- 2000</td>
</tr>
<tr>
<td>Au</td>
<td>0.0000004</td>
<td>0.0001</td>
<td>250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Dold,2008; RESB)
Dr. Bernhard Dold: Treatment, Remediation, and Prevention of Acid-Rock Drainage (ARD)

(Dold, 2008; RESB)
Conclusions

Biomining in leach dumps in giant Cu mining is extremely ineffective
(70-90 % of the resource remains untouched!)

Criteria for bioleaching is ore grade, NOT mineralogy!!!

Principally only acid soluble Cu is leached

Real bioleaching of chalcopyrite is not reached.

Leach dumps do not have impermeable basement!

Potential

Convince the mining operation that:

1. They can do better (difficult with the actual metal prices!)
2. Characterization of the ore in order to build segregated deposits for optimized recovery
3. To built the deposit in order to increase temperature to reach 50-60°C (thermophile archea)
 4. Additional heat source is needed (pyrite?)
5. Control of Temperature and air flow in the system
6. Control of PLS on long-term
7. Control of secondary mineralogy and chemistry of the solution is needed to prevent precipitation and inhibition
8. Search for additional values in the material and development of extraction techniques